모델
-
파이썬 LinearSVC<Python>/[Model] 2021. 12. 24. 21:12
LinearSVC from sklearn.svm import LinearSVC model = LinearSVC() LinearSVC 파라미터 # penalty = {‘l1’, ‘l2’}, 기본값=’l2’ # loss = {‘hinge’, ‘squared_hinge’}, 기본값=’squared_hinge’ # dual = bool, 기본값=True # tol = float, 기본값=1e-4 # C = float, 기본값=1.0 # multi_class = {‘ovr’, ‘crammer_singer’}, 기본값=’ovr’ # class_weight = {dict, ‘balanced’}, 기본값=None # fit_intercept = bool, 기본값=True # intercept_scaling = floa..
-
파이썬 SVM<Python>/[Model] 2021. 12. 24. 20:17
SVM from sklearn.svm import SVC model = SVC(C=10, gamma=1, random_state=1, probability=True) #gamma='auto' SVM 파라미터 # C=float, default=1.0 # kernel={‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’ # degree=int, default=3 # gamma={‘scale’, ‘auto’} or float, default=’scale’ # 'rbf', 'poly','sigmoid'에 대한 커널계수 # coef0=float, default=0.0 #coef0는 모델이 높은 차수와 낮은 차수에 얼마나 영향을 끼치는지 정할 수 있..
-
파이썬 랜덤포레스트<Python>/[Model] 2021. 12. 24. 18:39
랜덤포레스트 from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(max_depth=10, n_estimators=100) 랜덤포레스트 # n_estimators=int, default=100 # criterion={“gini”, “entropy”}, default=”gini” # min_samples_split={int, float} ,default=2 # min_samples_leaf={int, float}, default=1 # min_weight_fraction_leaf=float, default=0.0 # max_depth=int, default=None # max_features={“auto”, “s..