-
sklearn.linear_model.Ridge 파라미터<Python>/[Sklearn] 2022. 1. 8. 22:16728x90
linear_model.Ridge
class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize='deprecated', copy_X=True, max_iter=None, tol=0.001, solver='auto', positive=False, random_state=None)
||y - Xw||^2_2 + alpha * ||w||^2_2
linear_model.Ridge 파라미터
alpha{float, ndarray of shape (n_targets,)}, default=1.0
fit_interceptbool, default=True
normalizebool, default=False
copy_Xbool, default=True
max_iterint, default=None
tolfloat, default=1e-3
solver{‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’, ‘lbfgs’}, default=’auto’
positivebool, default=False
random_stateint, RandomState instance, default=None
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.SGDRegressor 파라미터 (0) 2022.01.10 sklearn.linear_model.RidgeCV 파라미터 (0) 2022.01.10 sklearn.linear_model.LinearRegression 파라미터 (0) 2022.01.08 sklearn.linear_model.SGDOneClassSVM 파라미터 (0) 2022.01.08 sklearn.linear_model.SGDClassifier 파라미터 (0) 2022.01.08