-
sklearn.linear_model.SGDRegressor 파라미터<Python>/[Sklearn] 2022. 1. 10. 17:54728x90
sklearn.linear_model.SGDRegressor 파라미터
class sklearn.linear_model.SGDRegressor(loss='squared_error', *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False)
sklearn.linear_model.SGDRegressor 파라미터
lossstr, default=’squared_error’
penalty{‘l2’, ‘l1’, ‘elasticnet’}, default=’l2’
alphafloat, default=0.0001
l1_ratiofloat, default=0.15
fit_interceptbool, default=True
max_iterint, default=1000
tolfloat, default=1e-3
shufflebool, default=True
verboseint, default=0
epsilonfloat, default=0.1
random_stateint, RandomState instance, default=None
learning_ratestr, default=’invscaling’
eta0float, default=0.01
power_tfloat, default=0.25
early_stoppingbool, default=False
validation_fractionfloat, default=0.1
n_iter_no_changeint, default=5
warm_startbool, default=False
averagebool or int, default=False
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.ElasticNetCV 파라미터 (0) 2022.01.10 sklearn.linear_model.ElasticNet 파라미터 (0) 2022.01.10 sklearn.linear_model.RidgeCV 파라미터 (0) 2022.01.10 sklearn.linear_model.Ridge 파라미터 (0) 2022.01.08 sklearn.linear_model.LinearRegression 파라미터 (0) 2022.01.08