-
sklearn.manifold.SpectralEmbedding 파라미터<Python>/[Sklearn] 2022. 1. 14. 22:34728x90
SpectralEmbedding
class sklearn.manifold.SpectralEmbedding(n_components=2, *, affinity='nearest_neighbors', gamma=None, random_state=None, eigen_solver=None, n_neighbors=None, n_jobs=None)
SpectralEmbedding 파라미터
n_componentsint, 기본값=2
affinity{‘nearest_neighbors’, ‘rbf’, ‘precomputed’, ‘precomputed_nearest_neighbors’} or callable, 기본값=’nearest_neighbors’
gammafloat, 기본값=None
random_stateint, RandomState instance or None, 기본값=None
eigen_solver{‘arpack’, ‘lobpcg’, ‘amg’}, 기본값=None
n_neighborsint, 기본값=None
n_jobsint, 기본값=None
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.manifold.locally_linear_embedding 파라미터 (0) 2022.01.14 sklearn.manifold.TSNE 파라미터 (0) 2022.01.14 sklearn.manifold.MDS 파라미터 (0) 2022.01.14 sklearn.manifold.LocallyLinearEmbedding 파라미터 (0) 2022.01.14 sklearn.manifold.Isomap 파라미터 (0) 2022.01.14