-
3/28<Kaggle>/[TensorFlow Speech Recognition] 2022. 3. 28. 21:19728x90
- tf.constant()
- tf.Variable()
- tf.placeholder()# tf.constant() : 변하지 않는 상수 생성 # tf.Variable() : 값이 바뀔 수도 있는 변수 생성 import tensorflow as tf sess = tf.Session() x1 = tf.constant([10], dtype=tf.float32, name='test1') x2 = tf.Variable([8], dtype=tf.float32, name='test2') init = tf.global_variables_initializer() sess.run(init) # 초기화 먼저 진행 print(sess.run(x1)) # 값 부여 ## tf.placeholder + feed_dict : 실행시 feed_dict={x="들어갈 값"}로 값을 지정하여 실행 import tensorflow as tf input_data = [7,8] x = tf.placeholder(dtype=tf.float32) y = x / 2 sess = tf.Session() print(sess.run(y, feed_dict={x:input_data}))
- tf.compat.v1.to_int32()
- tf.compat.v1.metrics.mean_iou()
- tf.control_dependencies()
# Define IoU metric from keras import backend as K def mean_iou(y_true, y_pred): prec = [] for t in np.arange(0.5, 1.0, 0.05): y_pred_ = tf.compat.v1.to_int32(y_pred > t) score, up_opt = tf.compat.v1.metrics.mean_iou(y_true, y_pred_, 2) K.get_session().run(tf.compat.v1.local_variables_initializer()) with tf.control_dependencies([up_opt]): score = tf.compat.v1.identity(score) prec.append(score) return K.mean(K.stack(prec), axis=0)
- tf.cast() : 소수점을 버리고 정수형으로 만듦
a = [1.9999, 2.1111] tf.cast(a) # [1, 2]
- tf.squeeze() : 1을 제거
a = [1,2,3,4] tf.squeeze(a) # [2,3,4]
- tf.reduce_mean()
import tensorflow as tf x = tf.constant([1., 3.] , [2., 4.]) sess = tf.Session() print(sess.run(tf.reduce_mean(x))) # 2.5 print(sess.run(tf.reduce_mean(x, 0))) # 열, [1.5, 3.5] print(sess.run(tf.reduce_mean(x, 1))) # 행, [2, 3]
- append() vs extend()
a = ['a1', 'b1'] b = ['a2', 'b2'] a.append(b) # ['a1', 'b1', ['a2', 'b2']] a.extend(b) # ['a1', 'b1', 'a2', 'b2']
728x90