-
728x90
# 4/19
with py7zr.SevenZipFile('./input/train.7z', 'r') as acheive:
acheive.extractall(path='./input/train/')
from scipy.io import wavfile
from scipy import signal
from scipy.fftpack import fft
import librosa # load-fm/ptdb/ds-fm/fd/ds
wavefile.read('')->signal.spectrogram()-> librosa.load('') -> librosa.feature.melspectrogram -> ipd.Audio(samples[4000:13000], rate=sample_rate) # 침묵제거
-> fft -> signal.resample() -> ipd.Audio(resampled, rate = sample_rate) # 차원축소 -> pca
pd.read_csv() vs wavefile.read()
sample_rate, samples = wavefile.read('')
samples, sample_rate = librosa.load('')
S = librosa.feature.melspectrogram(samples, sr=sample_rate, n_mels=128) #signal.spectrogram()
log_S = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(log_S, sr=sample_rate, x_axis='time', y_axis='mel')
mfcc = librosa.feature.mfcc(S=log_S, n_mfcc=13)
delta2_mfcc = librosa.feature.delta(mfcc, order=2)
librosa.display.specshow(delta2_mfcc)
os.path.split('./input/train.csv')[0] # './input'
os.path.split('./input/train.csv')[1] # '.train.csv'
return np.pad(x, (0, 16000-len(x)), mode="constant")/32768, target
import IPython.display as ipd
ipd.Audio(samples, rate=sample_rate)728x90