-
sklearn.inspection.plot_partial_dependence 파라미터 정리<Python>/[Sklearn] 2021. 12. 30. 15:39728x90
plot_partial_dependence
plot_partial_dependence은 1.0에서 더 이상 사용되지 않으며 1.2에서 제거됩니다. 대신 PartialDependenceDisplay.from_estimator를 사용하십시오.
from sklearn.inspection import plot_partial_dependence
plot_partial_dependence 파라미터
estimator = BaseEstimator
X = {array-like, dataframe} of shape (n_samples, n_features)
features = list of {int, str, pair of int, pair of str}
feature_names = array-like of shape (n_features,), dtype=str, default=None
target = int, default=None
response_method = {‘auto’, ‘predict_proba’, ‘decision_function’}, default=’auto’
n_cols = int, default=3
grid_resolution = int, default=100
percentiles = tuple of float, default=(0.05, 0.95)
method = str, default=’auto’
n_jobs = int, default=None
verbose = int, default=0
line_kw = dict, default=None
ice_lines_kw = dict, default=None
# ex) ice_lines_kw={"color": "tab:blue", "alpha": 0.5, "linewidth": 0.5}pd_line_kw = dict, default=None
# ex) pd_line_kw={'color':'k'}contour_kw = dict, default=None
ax = Matplotlib axes or array-like of Matplotlib axes, default=None
kind = {‘average’, ‘individual’, ‘both’}, default=’average’
subsample = float, int or None, default=1000
random_state = int, RandomState instance or None, default=None
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.isotonic.check_increasing 파라미터 정리 (0) 2021.12.30 sklearn.isotonic.IsotonicRegression 파라미터 정리 (0) 2021.12.30 sklearn.inspection.PartialDependenceDisplay 파라미터 정리 (0) 2021.12.29 sklearn.inspection.permutation_importance 파라미터 정리 (0) 2021.12.29 sklearn.inspection.partial_dependence 파라미터 정리 (0) 2021.12.29