-
sklearn.linear_model.LogisticRegression 파라미터<Python>/[Sklearn] 2022. 1. 8. 19:02728x90
linear_model.LogisticRegression 파라미터
linear_model.LogisticRegression 파라미터
penalty{‘l1’, ‘l2’, ‘elasticnet’, ‘none’}, default=’l2’
dualbool, default=False
tolfloat, default=1e-4
Cfloat, default=1.0
fit_interceptbool, default=True
intercept_scalingfloat, default=1
class_weightdict or ‘balanced’, default=None
random_stateint, RandomState instance, default=None
solver{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default=’lbfgs’
max_iterint, default=100
multi_class{‘auto’, ‘ovr’, ‘multinomial’}, default=’auto’
verboseint, default=0
warm_startbool, default=False
n_jobsint, default=None
l1_ratiofloat, default=None
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.PassiveAggressiveClassifier 파라미터 (0) 2022.01.08 sklearn.linear_model.LogisticRegressionCV 파라미터 (0) 2022.01.08 sklearn.kernel_ridge.KernelRidge 파라미터 (0) 2022.01.08 sklearn.kernel_approximation.SkewedChi2Sampler 파라미터 (0) 2022.01.08 sklearn.kernel_approximation.RBFSampler 파라미터 (0) 2022.01.08