-
sklearn.linear_model.LarsCV 파라미터<Python>/[Sklearn] 2022. 1. 10. 17:59728x90
sklearn.linear_model.LarsCV 파라미터
class sklearn.linear_model.LarsCV(*, fit_intercept=True, verbose=False, max_iter=500, normalize='deprecated', precompute='auto', cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True)
sklearn.linear_model.LarsCV 파라미터
fit_interceptbool, default=True
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
verbosebool or int, default=False
Sets the verbosity amount.
max_iterint, default=500
Maximum number of iterations to perform.
normalizebool, default=True
This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use StandardScaler before calling fit on an estimator with normalize=False.
Deprecated since version 1.0: normalize was deprecated in version 1.0. It will default to False in 1.2 and be removed in 1.4.
precomputebool, ‘auto’ or array-like , default=’auto’
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix cannot be passed as argument since we will use only subsets of X.
cvint, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, KFold is used.
Refer User Guide for the various cross-validation strategies that can be used here.
Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.
max_n_alphasint, default=1000
The maximum number of points on the path used to compute the residuals in the cross-validation.
n_jobsint or None, default=None
Number of CPUs to use during the cross validation. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.
epsfloat, default=np.finfo(float).eps
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.
copy_Xbool, default=True
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.LassoCV 파라미터 (0) 2022.01.11 sklearn.linear_model.Lasso 파라미터 (0) 2022.01.11 sklearn.linear_model.Lars 파라미터 (0) 2022.01.10 sklearn.linear_model.ElasticNetCV 파라미터 (0) 2022.01.10 sklearn.linear_model.ElasticNet 파라미터 (0) 2022.01.10