-
sklearn.linear_model.Lars 파라미터<Python>/[Sklearn] 2022. 1. 10. 17:58728x90
sklearn.linear_model.Lars 파라미터
class sklearn.linear_model.Lars(*, fit_intercept=True, verbose=False, normalize='deprecated', precompute='auto', n_nonzero_coefs=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, jitter=None, random_state=None)
sklearn.linear_model.Lars 파라미터
fit_interceptbool, default=True
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
verbosebool or int, default=False
Sets the verbosity amount.
normalizebool, default=True
This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use StandardScaler before calling fit on an estimator with normalize=False.
Deprecated since version 1.0: normalize was deprecated in version 1.0. It will default to False in 1.2 and be removed in 1.4.
precomputebool, ‘auto’ or array-like , default=’auto’
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.
n_nonzero_coefsint, default=500
Target number of non-zero coefficients. Use np.inf for no limit.
epsfloat, default=np.finfo(float).eps
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.
copy_Xbool, default=True
If True, X will be copied; else, it may be overwritten.
fit_pathbool, default=True
If True the full path is stored in the coef_path_ attribute. If you compute the solution for a large problem or many targets, setting fit_path to False will lead to a speedup, especially with a small alpha.
jitterfloat, default=None
Upper bound on a uniform noise parameter to be added to the y values, to satisfy the model’s assumption of one-at-a-time computations. Might help with stability.
New in version 0.23.
random_stateint, RandomState instance or None, default=None
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.Lasso 파라미터 (0) 2022.01.11 sklearn.linear_model.LarsCV 파라미터 (0) 2022.01.10 sklearn.linear_model.ElasticNetCV 파라미터 (0) 2022.01.10 sklearn.linear_model.ElasticNet 파라미터 (0) 2022.01.10 sklearn.linear_model.SGDRegressor 파라미터 (0) 2022.01.10