-
sklearn.linear_model.RANSACRegressor 파라미터<Python>/[Sklearn] 2022. 1. 13. 20:37728x90
RANSACRegressor
class sklearn.linear_model.RANSACRegressor(base_estimator=None, *, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=inf, stop_n_inliers=inf, stop_score=inf, stop_probability=0.99, loss='absolute_error', random_state=None)
RANSACRegressor 파라미터
base_estimatorobject, default=None
min_samplesint (>= 1) or float ([0, 1]), default=None
residual_thresholdfloat, default=None
is_data_validcallable, default=None
is_model_validcallable, default=None
max_trialsint, default=100
max_skipsint, default=np.inf
stop_n_inliersint, default=np.inf
stop_scorefloat, default=np.inf
stop_probabilityfloat in range [0, 1], default=0.99
lossstr, callable, default=’absolute_error’
random_stateint, RandomState instance, default=None
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.PoissonRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.TheilSenRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.QuantileRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.HuberRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.MultiTaskLassoCV 파라미터 (0) 2022.01.13