-
sklearn.linear_model.TweedieRegressor 파라미터<Python>/[Sklearn] 2022. 1. 13. 20:41728x90
sklearn.linear_model.TweedieRegressor 파라미터
class sklearn.linear_model.TweedieRegressor(*, power=0.0, alpha=1.0, fit_intercept=True, link='auto', max_iter=100, tol=0.0001, warm_start=False, verbose=0)
sklearn.linear_model.TweedieRegressor 파라미터
powerfloat, default=0
The power determines the underlying target distribution according to the following table:
PowerDistribution
0 Normal 1 Poisson (1,2) Compound Poisson Gamma 2 Gamma 3 Inverse Gaussian For 0 < power < 1, no distribution exists.
alphafloat, default=1
fit_interceptbool, default=True
link{‘auto’, ‘identity’, ‘log’}, default=’auto’
max_iterint, default=100
tolfloat, default=1e-4
warm_startbool, default=False
verboseint, default=0
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.linear_model.PassiveAggressiveRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.GammaRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.PoissonRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.TheilSenRegressor 파라미터 (0) 2022.01.13 sklearn.linear_model.RANSACRegressor 파라미터 (0) 2022.01.13