-
sklearn.manifold.spectral_embedding 파라미터<Python>/[Sklearn] 2022. 1. 14. 22:40728x90
spectral_embedding
sklearn.manifold.spectral_embedding(adjacency, *, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True, drop_first=True)
spectral_embedding 파라미터
adjacency{array-like, sparse graph} of shape (n_samples, n_samples)
n_componentsint, default=8
eigen_solver{‘arpack’, ‘lobpcg’, ‘amg’}, default=None
random_stateint, RandomState instance or None, default=None
eigen_tolfloat, default=0.0
norm_laplacianbool, default=True
drop_firstbool, default=True
728x90'<Python> > [Sklearn]' 카테고리의 다른 글
sklearn.manifold.trustworthiness 파라미터 (0) 2022.01.14 sklearn.manifold.smacof 파라미터 (0) 2022.01.14 sklearn.manifold.locally_linear_embedding 파라미터 (0) 2022.01.14 sklearn.manifold.TSNE 파라미터 (0) 2022.01.14 sklearn.manifold.SpectralEmbedding 파라미터 (0) 2022.01.14