<Python>
-
sklearn.linear_model.PassiveAggressiveClassifier 파라미터<Python>/[Sklearn] 2022. 1. 8. 19:07
linear_model.PassiveAggressiveClassifier 파라미터 linear_model.PassiveAggressiveClassifier 파라미터 Cfloat, default=1.0 fit_interceptbool, default=True max_iterint, default=1000 tolfloat or None, default=1e-3 early_stoppingbool, default=False validation_fractionfloat, default=0.1 n_iter_no_changeint, default=5 shufflebool, default=True verboseint, default=0 lossstr, default=”hinge” n_jobsint or None, de..
-
sklearn.linear_model.LogisticRegressionCV 파라미터<Python>/[Sklearn] 2022. 1. 8. 19:05
linear_model.LogisticRegressionCV 파라미터 linear_model.LogisticRegressionCV 파라미터 Csint or list of floats, default=10 fit_interceptbool, default=True cvint or cross-validation generator, default=None dualbool, default=False penalty{‘l1’, ‘l2’, ‘elasticnet’}, default=’l2’ scoringstr or callable, default=None solver{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default=’lbfgs’ tolfloat, default=1..
-
sklearn.linear_model.LogisticRegression 파라미터<Python>/[Sklearn] 2022. 1. 8. 19:02
linear_model.LogisticRegression 파라미터 linear_model.LogisticRegression 파라미터 penalty{‘l1’, ‘l2’, ‘elasticnet’, ‘none’}, default=’l2’ dualbool, default=False tolfloat, default=1e-4 Cfloat, default=1.0 fit_interceptbool, default=True intercept_scalingfloat, default=1 class_weightdict or ‘balanced’, default=None random_stateint, RandomState instance, default=None solver{‘newton-cg’, ‘lbfgs’, ‘liblinea..
-
sklearn.kernel_ridge.KernelRidge 파라미터<Python>/[Sklearn] 2022. 1. 8. 19:00
sklearn.kernel_ridge.KernelRidge 파라미터 sklearn.kernel_ridge.KernelRidge 파라미터 alphafloat or array-like of shape (n_targets,), default=1.0 kernelstr or callable, default=”linear” gammafloat, default=None degreefloat, default=3 coef0float, default=1 kernel_paramsmapping of str to any, default=None
-
sklearn.kernel_approximation.RBFSampler 파라미터<Python>/[Sklearn] 2022. 1. 8. 18:57
kernel_approximation.RBFSampler 파라미터 kernel_approximation.RBFSampler 파라미터 gammafloat, default=1.0 Parameter of RBF kernel: exp(-gamma * x^2). n_componentsint, default=100 random_stateint, RandomState instance or None, default=None
-
sklearn.kernel_approximation.PolynomialCountSketch 파라미터<Python>/[Sklearn] 2022. 1. 8. 18:56
kernel_approximation.PolynomialCountSketch 파라미터 K(X, Y) = (gamma * + coef0)^degree kernel_approximation.PolynomialCountSketch 파라미터 gammafloat, default=1.0 degreeint, default=2 coef0int, default=0 n_componentsint, default=100 random_stateint, RandomState instance, default=None
-
sklearn.kernel_approximation.Nystroem 파라미터<Python>/[Sklearn] 2022. 1. 8. 18:54
sklearn.kernel_approximation.Nystroem sklearn.kernel_approximation.Nystroem 파라미터 kernelstr or callable, default=’rbf’ gammafloat, default=None coef0float, default=None degreefloat, default=None kernel_paramsdict, default=None n_componentsint, default=100 random_stateint, RandomState instance or None, default=None n_jobsint, default=None