parameter
-
sklearn.impute.MissingIndicator 파라미터 정리<Python>/[Sklearn] 2021. 12. 28. 17:48
MissingIndicator class sklearn.impute.MissingIndicator(*, missing_values=nan, features='missing-only', sparse='auto', error_on_new=True) from sklearn.impute import MissingIndicator MissingIndicator 파라미터 missing_values = {int, float, str, np.nan, None}, default=np.nan features = {‘missing-only’, ‘all’}, default=’missing-only’ sparse = bool or ‘auto’, default=’auto’ 'auto'(기본값) 경우, imputer 마스크는 입력..
-
sklearn.impute.IterativeImputer 파라미터 정리<Python>/[Sklearn] 2021. 12. 28. 16:07
IterativeImputer(회귀대치) class sklearn.impute.IterativeImputer(estimator=None, *, missing_values=nan, sample_posterior=False, max_iter=10, tol=0.001, n_nearest_features=None, initial_strategy='mean', imputation_order='ascending', skip_complete=False, min_value=- inf, max_value=inf, verbose=0, random_state=None, add_indicator=False) from sklearn.experimental import enable_iterative_imputer from skl..